范文大全

七年级数学教学教案

作者: 爱可网 时间:2024年04月10日 来源:www.ik35.com

七年级数学教学教案篇1

  ●教学目标

  知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。

  过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。

  情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。

  ●教学重点与难点

  教学重点:绝对值的概念和求一个数的绝对值

  教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数。

  ●教学准备

  多媒体课件

  ●教学过程

  一、创设问题情境

  用多媒体动画显示:两只小狗从同一点O出发,在一条笔直的街上跑,

  一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记做__________,B处记做__________。

  以O为原点,取适当的单位长度画数轴,并标出A、B的位置。

  (用生动有趣的图画吸引学生,即复习了数轴和相反数,又为下文作准备)。

  2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两

  又有什么特征?(从形和数两个角度去感受绝对值)。

  3、在数轴上找到-5和5的点,它们到原点的‘距离分别是多少?表示-和的点呢?

  小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。

  二、建立数学模型

  绝对值的概念

  (借助于数轴这一工具,师生共同讨论,引出绝对值的概念)

  绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.

  注意:①与原点的关系②是个距离的概念

  练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。

  (通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)

  三、应用深化知识

  1、例题求解

  例1、求下列各数的绝对值

  -1.6, , 0, -10, +10

  解:|-1.6|=1.6 ||= |0|=0

  |-10|=10 |+10|=10

  2、练习2:填表

  相反数 绝对值 2.05 1000 0 - -1000 -2.05

  (以表格的形式将绝对值和相反数进行比较,为归纳绝对值的特征作准备)

  3、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)

  特点:1、一个正数的绝对值是它本身

  2、一个负数的绝对值是它的相反数

  3、零的绝对值是零

  4、互为相反数的两个数的绝对值相等

  4、练习3:回答下列问题

  ①一个数的绝对值是它本身,这个数是什么数?

  ②一个数的绝对值是它的相反数,这个数是什么数?

  ③一个数的绝对值一定是正数吗?

  ④一个数的绝对值不可能是负数,对吗?

  ⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?

  (由学生口答完成,进一步巩固绝对值的概念)

  5、例2、求绝对值等于4的数。

  (让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)

  分析:

  ①从数字上分析

  ∵|+4|=4,|-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)

  ②从几何意义上分析,画一个数轴(如下图)

  ∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M

  ∴绝对值等于4的数是+4和-4

  注意:说明符号“∵”读作“因为”,“∴”读作“所以”

  6、练习本:做书上16页课内练习3、4两题。

  四、归纳小结

  本节课我们学习了什么知识?

  你觉得本节课有什么收获?

  由学生自行总结在自主探究,合作学习中的体会。

  五、课后作业

  让学生去寻找一些生活中只考虑绝对值的实际例子。

  课本16页的作业题。

  本人在近几届乐清市中、小、幼教师教学论文联评中均有获奖,特别是论文《谈数学学困生的惰性心态及教学策略》在全国数学教研第十一届年会论文(初中组)比赛中获三等奖;而且在近几年的说课比赛和优质课评比中表现出色;是校青年骨干教师,名教师培养对象。

  乐清市虹桥镇第一中学 陈杨明

  -4 -3 -2 -1 0 1 2 3 4

  4个单位长度 4个单位长度

  M

七年级数学教学教案篇2

    一、知识结构

  在平行线知识的基础上,教科书以学生对长方体的直观认识为基础,通过观察长方体的某些棱与面、面与面的不相交,进而把它们想象成空间里的直线与平面、平面与平面的不相交,来建立空间里平行的概念。培养学生的空间观念。

    二、重点、难点分析

  能认识空间里直线与直线、直线与平面、平面与平面的平行关系既是本节教学重点也是难点。本节知识是线线平行的相关知识的延续,对培养学生的空间观念,进一步研究空间中的点、线、面、体的关系具有重要的意义。

  1.我们知道在同一平面内的两条直线的位置关系有两种:相交或平行,由于垂直和平行这两种关系与人类的。生产、生活密切相关,所以这两种空间位置关系历来受到人们的关注,前面我们学过在平面内直线与直线垂直的情况,以及在空间里直线与平面,平面与平面的垂直关系。

  2.例如:在图中长方体的棱AA’与面ABCD垂直,面A‘ABB’与面ABCD互相垂直并且当时我们还从观察中得出下面两个结论:

  (1)一条棱垂直于一个面内两条相交的棱,这条棱与这个面就互相垂直。

  (2)一个面经过另一个面的一条垂直的棱,这两个面就互相垂直。

  正如上述,在空间里有垂直情况一样,在空间里也有平行的情况,首先看棱AB与面A‘B’C‘D’的位置关系,把棱AB向两方延长,面A‘B’C‘D’向各个方向延伸,它们总也不会相交,像这样的棱和面就是互相平行的,同样,棱AB与面DD‘C’C是互相平行的,棱AA‘与面BB’C‘C、与面DD’C‘C也是互相平行的再看面ABCD与A’B‘C’D‘,这两个面无论怎样延展,它们总也不会相交,像这样的两个面是互相平行的,面AA’B‘B与DD’C‘C也是互相平行的

  3.直线与平面、平面与平面平行的判定

  (1)不在平面内的一条直线,只要与平面内的某一条直线平行,那么,这条直线与这个平面平行。(直线与平面平行的判定)

  (2)如果一个平面内两条直线都与另一个平面平行,那么这两个平面互相平行。(空间里平面与平面平行的判定)

    三、教法建议

  1.空间里的平行关系,是高中学习《立体几何》的重要部分,本节知识在初中阶段让学生积累一些感性的认识。学习这节内容要注意联系实物(如火柴盒,教室)中的线与线、线与面、面与面的关系就容易得多了。

  2.本节在已有的对长方体的直观认识的基础上,通过对长方体的棱与面、面与面的不相交的观察,介绍了空间里的直线与平面、平面与平面平行的关系。目的主要是培养空间思维,但只是一个初步的感性认识,只需基本了解,不需要系统地学习。

  3.教学时应该注意的是这里所说的平面一定是无限延伸的两面墙平行,是指两面墙所在的平面平行,不是指墙这一小部分平行。

七年级数学教学教案篇3

  解这个方程,就能得到所求的结果。

  问:你会解这个方程吗?试试看?

  问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”

  通过分析,列出方程:13+x=(45+x)

  问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?

  把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,

  因为左边=右边,所以x=3就是这个方程的解。

  这种通过试验的方法得出方程的。解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。

  问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?

  同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?

  教科书第3页练习1、2.

  四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。

  五、作业 。教科书第3页,习题6.1第1、3题。

七年级数学教学教案篇4

    教学目的

  通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

    重点、难点

  1.重点:方程的两种变形。

  2.难点:由具体实例抽象出方程的两种变形。

    教学过程

  一、引入

  上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

  二、新授

  让我们先做个实验,拿出预先准备好的天平和若干砝码。

  测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

  如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

  如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

  让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

  问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?

  学生回答后,教师归纳:方程两边都减去同一个数,方程的`解不变。

  问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?

  让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?

  把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?

  由图(1)、(2)可归结为;

  方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

  让学生观察(3),由学生自己得出方程的第二个变形。

  即方程两边都乘以或除以同一个不为零的数,方程的解不变:

  通过对方程进行适当的变形。可以求得方程的解。

  例1.解下列方程

  (1)x-5=7 (2)4x=3x-4

  (1)解两边都加上5,x,x=7+5 即 x=12

  (2)两边都减去3x,x=3x-4-3x 即 x=-4

  请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?

  这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

  注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

  例2.解下列方程

  (1)-5x=2 (2) x=

  这里的变形通常称为“将未知数的系数化为1”。

  以上两个例题都是对方程进行适当的变形,得到x=a的形式。

  练习:

  课本第6页练习1、2、3.

  练习中的第3题,即第2页中的方程①先让学生讨论、交流。

  鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

  三、巩固练习

  教科书第7页,练习

  四、小结

  本节课我们通过天平实验,得出方程的两种变形:

  1.把方程两边都加上或减去同一个数或整式方程的解不变。

  2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

  五、作业

  教科书第7—8页习题6.2.1第1、2、3.

七年级数学教学教案篇5

  1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的。作用。

  2.使学生会列一元一次方程解决一些简单的应用题。

  3.会判断一个数是不是某个方程的解。

  1.重点:会列一元一次方程解决一些简单的应用题。

  2.难点:弄清题意,找出“相等关系”。

  一、复习提问

  一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?

  解:设小红能买到工本笔记本,那么根据题意,得

  1.2x=6

  因为1.2×5=6,所以小红能买到5本笔记本。

  二、新授:

  问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)

  算术法:(328-64)÷44=264÷44=6(辆)

  列方程:设需要租用x辆客车,可得。

七年级数学教学教案篇6

    教学目标

  1.理解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性;

  2.能根据有理数乘法法则熟练地进行有理数乘法运算,使学生掌握多个有理数相乘的积的符号法则;

  3.三个或三个以上不等于0的有理数相乘时,能正确应用乘法交换律、结合律、分配律简化运算过程;

  4.通过有理数乘法法则及运算律在乘法运算中的运用,培养学生的运算能力;

  5.本节课通过行程问题说明法则的合理性,让学生感知到数学知识来源于生活,并应用于生活。

    教学建议

  (一)重点、难点分析

  本节的教学重点是能够熟练进行运算。依据法则和运算律灵活进行有理数乘法运算是进一步学习除法运算和乘方运算的基础。运算和加法运算一样,都包括符号判定与绝对值运算两个步骤。因数不包含0的乘法运算中积的符号取决于因数中所含负号的个数。当负号的个数为奇数时,积的符号为负号;当负号的个数为偶数时,积的符号为正数。积的绝对值是各个因数的绝对值的积。运用乘法交换律恰当的结合因数可以简化运算过程。

  本节的难点是对法则的理解。法则中的“同号得正,异号得负”只是针对两个因数相乘的情况而言的。乘法法则给出了判定积的符号和积的绝对值的方法。即两个因数符号相同,积的符号是正号;两个因数符号不同,积的符号是负号。积的绝对值是这两个因数的绝对值的积。

  (二)知识结构

  (三)教法建议

  1.有理数乘法法则,实际上是一种规定。行程问题是为了了解这种规定的合理性。

  2.两数相乘时,确定符号的依据是“同号得正,异号得负”。绝对值相乘也就是小学学过的算术乘法。

  3.基础较差的同学,要注意乘法求积的符号法则与加法求和的符号法则的区别。

  4.几个数相乘,如果有一个因数为0,那么积就等于0.反之,如果积为0,那么,至少有一个因数为0.

  5.小学学过的乘法交换律、结合律、分配律对有理数乘法仍适用,需注意的是这里的字母a、b、c既可以是正有理数、0,也可以是负有理数。

  6.如果因数是带分数,一般要将它化为假分数,以便于约分。

  教学设计示例

  (第一课时)

  教学目标

  1.使学生在了解意义基础上,理解有理数乘法法则,并初步理解有理数乘法法则的合理性;

  2.通过运算,培养学生的运算能力;

  3.通过教材给出的行程问题,认识数学来源于实践并反作用于实践。

  教学重点和难点

  重点:依据法则,熟练进行运算;

  难点:有理数乘法法则的理解。

  课堂教学过程 设计

  一、从学生原有认知结构提出问题

  1.计算(-2)+(-2)+(-2)。

  2.有理数包括哪些数?小学学习四则运算是在有理数的什么范围中进行的?(非负数)

  3.有理数加减运算中,关键问题是什么?和小学运算中最主要的不同点是什么?(符号问题)

  4.根据有理数加减运算中引出的新问题主要是负数加减,运算的关键是确定符号问题,你能不能猜出在有理数乘法以及以后学习的除法中将引出的新内容以及关键问题是什么?(负数问题,符号的‘确定)

  二、师生共同研究有理数乘法法则

  问题1 水库的水位每小时上升3厘米,2小时上升了多少厘米?

  解:3×2=6(厘米) ①

  答:上升了6厘米。

  问题2 水库的水位平均每小时下降3厘米,2小时上升多少厘米?

  解:-3×2=-6(厘米) ②

  答:上升-6厘米(即下降6厘米)。

  引导学生比较①,②得出:

  把一个因数换成它的相反数,所得的积是原来的积的相反数。

  这是一条很重要的结论,应用此结论,3×(-2)=?(-3)×(-2)=?(学生答)

  把3×(-2)和①式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“6”的相反数“-6”,即3×(-2)=-6.

  把(-3)×(-2)和②式对比,这里把一个因数“2”换成了它的相反数“-2”,所得的积应是原来的积“-6”的相反数“6”,即(-3)×(-2)=6.

  此外,(-3)×0=0.

  综合上面各种情况,引导学生自己归纳出有理数乘法的法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘;

  任何数同0相乘,都得0.

  继而教师强调指出:

  “同号得正”中正数乘以正数得正数就是小学学习的乘法,有理数中特别注意“负负得正”和“异号得负”。

  用有理数乘法法则与小学学习的乘法相比,由于介入了负数,使乘法较小学当然复杂多了,但并不难,关键仍然是乘法的符号法则:“同号得正,异号得负”,符号一旦确定,就归结为小学的乘法了。

  因此,在进行有理数乘法时,需要时时强调:先定符号后定值。

  三、运用举例,变式练习

  例1 计算:

  例2 某一物体温度每小时上升a度,现在温度是0度。

  (1)t小时后温度是多少?

  (2)当a,t分别是下列各数时的结果:

  ①a=3,t=2;②a=-3,t=2;

  ②a=3,t=-2;④a=-3,t=-2;

  教师引导学生检验一下(2)中各结果是否合乎实际。

  课堂练习

  1.口答:

  (1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;

  (5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);

  2.口答:

  (1)1×(-5); (2)(-1)×(-5); (3)+(-5);

  (4)-(-5); (5)1×a; (6)(-1)×a。

  这一组题做完后让学生自己总结:一个数乘以1都等于它本身;一个数乘以-1都等于它的相反数。+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5)。同时教师强调指出,a可以是正数,也可以是负数或0;-a未必是负数,也可以是正数或0.

  3.当a,b是下列各数值时,填写空格中计算的积与和:

  4.填空:

  (1)1×(-6)=______;(2)1+(-6)=_______;

  (3)(-1)×6=________;(4)(-1)+6=______;

  (5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;

  (9)|-7|×|-3|=_______;(10)(-7)×(-3)=______。

  5.判断下列方程的解是正数还是负数或0:

  (1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.

  今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”。

  1.计算:

  (1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);

  (4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32)。

  2.计算:

  3.填空(用“>”或“0时,那么a ____________2a;

  (4)如果a

  探究活动

  问题: 桌上放7只茶杯,杯口全部朝上,每次翻转其中的4只,能否经过若干次翻转,把它们翻成杯口全部朝下?

  答案: “±1”将告诉你:不管你翻转多少次,总是无法使这7只杯口全部朝下。道理很简单,用“+1”表示杯口朝上,“-1”表示杯口朝下,问题就变成:“把7个+1每次改变其中4个的符号,若干次后能否都变成-1?”考虑这7个数的乘积,由于每次都改变4个数的符号,所以它们的乘积永远不变(为+1)。而7个杯口全部朝下时,7个数的乘积等于-1,这是不可能的

  道理竟是如此简单,证明竟是如此巧妙,这要归功于“±1”语言。

七年级数学教学教案篇7

  教学目标

  (1)知识与技能:

  探索平行线的性质定理,并掌握它们的图形语言、文字语言、符号语言;会用平行线的性质定理进行简单的计算、证明。

  (2)过程与方法:

  在定理的学习中,锻炼观察能力,尝试与他人合作开展讨论、研究,并表达自己的见解。

  (3)情感态度、价值观:

  在课堂练习中,体验几何与实际生活的密切联系。

  教学重点

  平行线的性质。

  教学难点

  平行线的性质定理与判定定理的区别。

  教学模式

  发现教学模式。

  教学方法

  直观教学法、发现教学法、主体互动法。

  教学手段

  计算机辅助教学。

  教学过程

  教学环节

  教师活动

  学 生活 动

  教 学 意 图

  复习提 问

  复习提问:

  判定两直线平行的方法有哪些?怎样用符号语言表述?

  思考、回答

  了解学生的认知基础,让全体学生对前一节的内容进行回顾,并为新课的学习做准备。

  

  【大屏幕】请每位同学利用手中的条格纸,任意选取其中的两条线作l1、l2,再随意画一条直线l3与l1、l2相交,用量角器量得图中的八个角,并填表(见附录1)

  随后同桌同学交换,再次测量、填表。

  关注:

  对于没有带量角器的学生,鼓励他们在无需测量的情况下,找出图中各角的度量关系。

  画图、测量、填表

  思考、动手尝试,方法可能多种多样

  激发学生探究数学问题的兴趣,使学生获得较强的感性认识,便于探索两直线平行的性质定理。关注学生的实际操作,以及操作中的思考和学生学习数学的'兴趣。

  给学生留有充分的探索和交流的空间,鼓励学生利用多种方法探索,这对于发展学生的空间观念,理解平行线的性质是十分重要的。

  【提问】能否将我们发现的结论给予较为准确的文字表述?

  总结、表述

  锻炼学生的归纳、表达能力,鼓励学生敢于发表自己的观点。

  【大屏幕】平行线的性质:

  定理1.两条平行线被第三条直线所截,同位角相等。简言之: 两直线平行,同位角相等。

  定理2.两条平行线被第三条直线所截,内错角相等。简言之: 两直线平行,内错角相等。

  定理3.两条平行线被第三条直线所截,同旁内角互补。简言之: 两直线平行,同旁内角互补。

  【提问】讨论这些性质定理与前面所学的判定定理有什么不同?

  理解、记忆、思考、讨论、回答

  进行文字语言的规范。

  避免出现概念的混淆,渗透“命题” 与“逆命题”的概念,突破本节课的难点避免出现概念的混淆,突破本节课的难点。

  【提问】回忆平行线判定定理的符号语言的表述,参照附录1的图形,将上述性质定理怎样用符号语言表达出呢?

  【大屏幕】符号语言:(不唯一)

  性质定理1.∵l1∥l2

  ∴∠1=∠5 (两直线平行,同位角相等)

  ∴∠3=∠5 (两直线平行,内错角相等)

  ∴∠3+∠6=180o (两直线平行,同旁内角互补)

  思考、一位同学板书。

  观察、理解

  为今后进一步学习推理打基础,并进行符号语言的规范。

  【提问】我们能否使用平行线的性质定理1说出性质定理2、3成立的道理呢?

  鼓励学生使用符号语言表述推导过程。

  【大屏幕】规范定理的推导过程。

  思考、尝试回答

  观察

  培养学生的逻辑思维能力以及严谨的治学态度。逐步锻炼学生的推理能力,并进一步巩固对定理的理解及语言的规范,感受成功的喜悦,树立学习数学的信心。

  

  【大屏幕】例:如图是一块梯形铁片的残余部分,量得∠A=100o,∠B=115o,梯形另外两个角分别是多少度?

  思考、尝试运用符号语言进行推理。

  要求学生会用平行线的性质进行计算,只需算出所求的度数即可。初次计算格式不一定很完整。

  

  【大屏幕】(见附录2)

  思考、讨论、解释结论

  寓教于乐,进一步让学生感受“认识来源于实践”。

  

  【大屏幕】巩固练习(见附录3)

  积极思考、展开讨论、踊跃回答

  循序渐进提高难度、提高灵活运用定理的能力,感受解决有关平行问题的关键,突破难点,并进一步提高用符号语言进行推理的能力。

  

  【大屏幕】探究题(见附录4)

  【备注】如果时间不允许的话,该题可作为课后作业,并给予简单的提示。

  猜测、讨论,寻找规律

  使重点中学学生的思路进一步得以拓宽,初次接触辅助线的添加,使学生能力得以提高。

  课堂小结

  【提问】本节课我们学习了哪些定理?在表述这些定理时,应注意什么呢?

  回顾、归纳

  将本节课知识进行回顾。

  布置

  作业

  【大屏幕】布置作业:教材P67的4、5;P68的6、7;P69的11、12

  课后完成

  课后能进一步巩固,鼓励学生去发现身边的数学问题。

七年级数学教学教案篇8

  1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。

  2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。

  重点:工程中的工作量、工作的效率和工作时间的关系。

  难点:把全部工作量看作“1”。

  1.一件工作,如果甲单独做2小时完成,那么甲独做I小时完成全部工作量的多少?

  2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成全部工作量的多少?

  3.工作量、工作效率、工作时间之间有怎样的关系?

  二、新授阅读教科书第18页中的’问题6.

  1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。

  2.怎样用列方程解决这个问题?本题中的等量关系是什么?

  [等量关系是:师傅做的工作量+徒弟做的工作量=1)

  [先要求出师傅与徒弟各完成的工作量是多少?]

  两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2

  师傅完成的工作量为= ,徒弟完成的工作量为=所以他们两人完成的工作量相同,因此每人各得225元。

  一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时;请你提出问题,并加以解答。

  例如 (1)剩下的乙独做要几小时完成?

  (2)剩下的由甲、乙合作,还需多少小时完成?

  (3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?

  1.本节课主要分析了工作问题中工作量、工作效率和工作时间之间的关系,即 工作量=工作效率×工作时间工作效率= 工作时间=

  2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。

  教科书习题6.3.3第1、2题。

七年级数学教学教案篇9

    一、教学目标

  1.能借助长方体的棱与面、面与面的平行关系,说出空间里直线与平面、平面与平面的平行关系。

  2.此外,在教学“空间里的平行关系”中,要培养学生的空间想象力。

  3.通过平行关系在生活中的应用,培养学生的应用意识。

    二、引导性材料

  复习提问:

  1.平面里,两直线的位置关系有哪些?在空间里,两直线的位置关系又有哪些?

  2.试说出两直线平行的意义。

  前面,我们在学习“两直线互相垂直”时,曾经学习过空间里的垂直关系。(可让学生以教室为实例,说出一些线与面,面与面的垂直关系。)前几节课,又学习了“平行线”的有关知识,在实际生活中常常也说什么与什么“平行”。(教师演示:一根木条或铅笔与桌面平行。)这种“平行”关系是什么样的平行关系呢?你也能举出一些这样的实例吗?这节课就研究这些问题。

    三、知识产生和发展过程的教学设计

  问题1—1:观察下图(也可要求学生携带一个长方体的。包装纸盒)中的长方体,棱AB与面A‘B’C‘D’的位置关系是什么?如果将棱AB向两边无限伸展,同时也将面A‘B’C‘D’向各个方向延展,它们之间有无可能相交?

  问题1-2:图中,你能以棱AB与面A‘B’C‘D’为一个具体例子,用类似于定义“平行线”的方法,给直线与平面平行下一个定义吗?(由学生口答,教师帮助完善,得出定义。)

  问题1-3:图中,除了棱AB外,还有与面A‘B’C‘D’平行的棱吗?有哪几条?(由学生分别说出棱BC,CD,AD都与面A‘B’C‘D’平行。)

  问题1-4:除了面A‘B’C‘D’外,棱AB还与哪个平面平行?

  问题2—1:如下图的长方体中,面ABCD与面A‘B’C‘D’能否相交?怎样定义空间里的两平面平行?

  问题2-2:观察你自己携带的长方体纸盒,能说出哪些平面平行吗?(可由学生讨论后,请一位学生带上纸盒,给学生边演示,边讲解。)

    四、例题解析

  例题:如下图,在长方体中,棱CD与哪些面平行?面A‘B’C‘D’与哪些棱平行?

  答:棱CD与面A‘B’BC、面A‘B’C‘D’平行;

  面A‘ADD’棱BB、棱BC、棱C‘C、棱B’C平行;

  面A‘B’BA与面D‘C’CD平行。(教师可根据教学的实际情况,对此例进行变式,如提出不同位置的线面。面面平行的问题。也可让学生自己来提出问题。由学生自己借助长方体纸盒解答这些问题,以增强学生对空间平行关系的感知,发展想象能力。)

    五、练习

  课本第90页练习第l、2题。

    六、小结

  本堂课以长方体(教室或纸盒)为实物模型,通过观察长方体的棱与面、面与面的位置关系,并把它们想像成空间里的直线与平面、平面与平面,研究了空间里的线与面、面与面平行的关系。

  我们生活在空间里,因而要养成用数学的眼光去观察世界的习惯,并逐步地学会用数学知识去研究问题、解决问题。

七年级数学教学教案篇10

  教学目标

  1.使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

  2.培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学建议

  1.重点和难点:正确地求出代数式的值。

  2.理解代数式的值:

  (1)一个代数式的值是由代数式中字母的取值而决定的。所以代数式的值一般不是一个固定的数,它会随着代数式中字母取值的变化而变化。因此在谈代数式的值时,必须指明在什么条件下。如:对于代数式n-2 ;当n=2 时,代数式n-2 的值是0;当n=4 时,代数式n-2 的值是2.

  (2)代数式中字母的取值必须确保做到以下两点:①使代数式有意义,②使它所表示的实际数量有意义,如: 1/(x-1)中

  不能取1,因为x=1 时,分母为零,式于1/(x-1) 无意义;如果式子中字母表示长方形的长,那么它必须大于0.

  3.求代数式的值的一般步骤:

  在代数式的值的概念中,实际也指明了求代数式的值的方法。即一是代入,二是计算。求代数式的值时,一要弄清楚运算符号,二要注意运算顺序。在计算时,要注意按代数式指明的运算进行。

  4.求代数式的`值时的注意事项:

  (1)代数式中的运算符号和具体数字都不能改变。

  (2)字母在代数式中所处的位置必须搞清楚。

  (3)如果字母取值是分数时,作乘方运算必须加上小括号,将来学了负数后,字母给出的值是负数也必须加上括号。

  5.本节知识结构:

  本小节从一个应用代数式的实例出发,引出代数式的值的概念,进而通过两个例题讲述求代数式的值的方法。

  6.教学建议

  (1) 代数式的值是由代数式里的字母所取的值决定的,因此在教学过程中,注意渗透对应的思想,这样有助于培养学生的函数观念。

  (2) 列代数式是由特殊到一般, 而求代数式的值, 则可以看成由一般到特殊,在教学中,可结合前一小节,适当渗透关于特殊与一般的辨证关系的思想。

  教学设计示例

  代数式的值(一)

  1使学生掌握代数式的值的概念,能用具体数值代替代数式中的字母,求出代数式的值;

  2培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

  教学重点和难点

  重点和难点:正确地求出代数式的值

  课堂教学过程设计

  一、从学生原有的认识结构提出问题

  1用代数式表示:(投影)

  (1)a与b的和的平方;(2)a,b两数的平方和;

  (3)a与b的和的50%?

  2用语言叙述代数式2n+10的意义?

  3对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)

  某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n个班,总共需多少个排球?

  若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

  最后,教师根据学生的回答情况,指出:需要添置排球总数,是随着班数的确定而确定的;当班数n取不同的数值时,代数式2n+10的计算结果也不同,显然,当n=15时,代数式的值是40;当n=20时,代数式的值是50?我们将上面计算的结果40和50,称为代数式2n+10当n=15和n=20时的值?这就是本节课我们将要学习研究的内容?

  二、师生共同研究代数式的值的意义

  1?用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值?

  2?结合上述例题,提出如下几个问题:

  (1)求代数式2x+10的值,必须给出什么条件?

  (2)代数式的值是由什么值的确定而确定的?

  当教师引导学生说出:“代数式的值是由代数式里字母的取值的确定而确定的”之后,可用图示帮助学生加深印象?

  然后,教师指出:只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应?

  (3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

  下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)

  例1 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

  解:当x=7,y=4,z=0时,

  x(2x-y+3z)=7×(2×7-4+3×0)

  =7×(14-4)

  =70?

  注意:如果代数式中省略乘号,代入后需添上乘号?

爱可网分享地址:http://www.ik35.com/wm/104255.html

猜您感兴趣

相关文章

上一篇:大学生实习报告范文
下一篇:有关简报格式模板及范文通用


Copyright © 2023-2024 www.ik35.com

All right reserved. 爱可网 版权所有

鲁ICP备15008254号

返回顶部重选